MOLab Standard Protocol for Preparing RT-PCR cDNA Stocks for qPCR

(Lan Zhou 11/02/00, updated by Yang Bi 02/24/08, commented by TCH)

NOTE

- A) Yang has recently compared the RT enzyme from NEB (Cat# M0253S) vs. Invitrogen's Superscript II, and found no significant difference between those enzymes. Thus, the NEB RT enzyme is the recommended choice in our lab. However, we do not use any manufacturer's protocol!
- B) After numerous pre-testing runs by former/current lab members, we decide that the RT enzyme in each reaction can be reduced to as low as **0.25**µI (the original suggested volume was 1.25µI).
- C) These conditions work well for most regular RT-PCR cDNAs prepared for real-time PCR assays, especially if your RNA is isolated from cultured cells and/or fresh tissue samples. However, if you are concerned about the yield and quality of your RNA samples, you are always recommended to check a couple microliters of your RNA samples on RNA gel (see Protocol C12).
- D) Make sure you use enough total RNA for each RT reaction. Typically, a subconfluent T-25 flask yields about 5-10μg total RNA, and a subconfluent 100mm dish yields about 10-20μg total RNA. Please keep in mind that the RNA yield will be much lower if the cells are cultured in low serum medium 8-12h prior to RNA isolation.
- **E)** In our TRIzol or Nucleozol RNA isolation protocol, we do not routinely use RNase-free DNase to digest away potential genomic DNA. Thus **-RT tube** is set up in some cases. However, we have found that the **-RT tube** is not necessary in most cases; so it is optional.
- 1. Turn on two heating blocks: one at 70°C and one at 37°C.
- 2. Make Hexamer mix [prepare half of the volume if -RT tube is not set up]:

	1X
Hexamer(random primer,1µg/µl)	4 μl
SSB (0.5µg/µl) (optional)	2 µl
RNase-free H2O	3 µl
Total volume	9 µl (or 4.5µl per RT)

3. Make Hexamer mix-RNA [prepare half of the volume if -RT tube is not set up]:

Total volume	25 µl (or 12.5µl per RT
RNase-free H2O	xx µl
Total RNA (10μg) or mRNA (0.5μg)	x μl
Hexamer mix	9 μΙ

- 4. Incubate @ 70°C for 3-5 minutes.
- 5. Prepare RT mix [prepare half of the volume if **-RT tube** is not set up]:

5 X First strand buffer	10 µl
0.1M DTT	4 µl
10mM dNTPs	2 µl
RNasin (optional)	0.4 µl
Total volume	16.4 µl (or ~8µl per RT)

6. Prepare +/- RT Reactions:

	+RT tube	-RT tube (optional)
Hexamer mix-RNA	12.0 µl	12.0 µl
RT mix	7.8 µl	7.8 µl
RT enzyme (NEB)	0.25 µl	0.0 μΙ
RNase-free H2O	0.0 µl	0.25 μl
Total volume	20µl	20µl

7. The cycling program of RT-PCR:

37°C X 60 minutes 95°C X 1 minute (for killing RT; RT interferes with Taq DNA Pol) 4°C Hold or kept at -80°C freezers

- 8. Add 80μl ddH₂O to get 100μl original cDNA, and then take 10μl out, add 40μl ddH₂O to dilute into 5 times (total volume = 100μl, aka., RT-PCR cDNA stock), and then use the diluted cDNA for real-time PCR. It's a good practice to aliquot the initial 100μl into multiple aliquots. Keep the aliquots at -80°C.
- 9. For most real-time PCR reactions, the cDNA mix needed to be further diluted 5 to 100 times, depending on transcript abundance of the gene of your interest. The Ct or Cq values for internal reference genes should be ideally between 15~20 cycles.