Standard PCR (From BV's Cookbook)

Setting up the reactions:

Make a master mix by setting up the following for each 10ul reaction:

H_2O	q.s. to 10 ul	
10xPCR buffer	1 ul	
dNTP(10 mM each; from BRL)	1 ul	
DMSO	0.6 ul	
Primer 1(50 uM)	0.2 ul	
Primer 2 (50 uM)	0.2 ul	
Add each reagent in the order listed and mix the reaction vigorously.		
Add Platinum Taq, 5 u/ul (BRL)	0.05 - 0.1 ul	

Add the above mix to 1 ul template DNA, 5 - 20 ng/ul Always include a H2O negative and a positive control for your PCR Add 1 drops light mineral oil to each tube with a plastic transfer pipette. Place tubes in PCR machine.

Running the reactions:

The following parameters are a good starting point

Denaturation: one cycle of 94°, 1minute

Polymerization: 35 cycles of:

Denaturing	94°C	1 min
Annealing	55°C	15 sec
Extension	70°C	15 sec

(Add 1 minute to extension for each kb of PCR product).

Extension:

One cycle of 70°C, 5min.

Notes:

- 1. Make sure your primers are designed as outlined the "Designing Primers for PCR protocol", and that they have a T_m of ~55-60°C.
- 2. You may want to try lower annealing temperatures which will vary with the primers used. You can vary by 4°C intervals until the best temperature is achieved. Time of annealing does not make much difference after 1min. Shorter times may not provide a reproducible plateau while longer time does not improve outcome.

- 3. Lower number of cycles may provide fewer products and less background. Yield drops off after 30 cycles and Taq may already be degraded by then.
- 4. Hai tested the effect of TE (10 mM Tris, 1 mM EDTA, pH 7.4, from Quality Biologics, Cat nol 351: 010-130), and found that 1, 2, 3, or even 5 ul of this TE, in a 25 ul total PCR reaction, did not inhibit the efficiency of a 1.5 kb amplification (5 ul TE may even have helped!).
- 5. With high GC templates, you can try higher concentrations of DMSO (8%, 10%, 12%). This sometimes works.

10X PCR Buffer (DMSO protocol)

NH ₄ SO ₄	166mM
Tris, pH 8.8	670mM
MgCl ₂	67mM
2-mercaptoethanol.	100mM